hub

CELLxGENE: scRNA-seq

CZ CELLxGENE hosts the globally largest standardized collection of scRNA-seq datasets.

LaminDB makes it easy to query the CELLxGENE data and integrate it with in-house data of any kind (omics, phenotypes, pdfs, notebooks, ML models, …).

You can use the CELLxGENE data in two ways:

  1. Query collections of AnnData objects (this page).

  2. Query a big array store produced by concatenated AnnData objects via tiledbsoma (see here).

If you are interested in building similar data assets in-house:

  1. See the transfer guide to zero-copy data to your own LaminDB instance.

  2. See the scRNA guide for how to create a growing versioned queryable scRNA-seq dataset.

  3. See the Curate for validating, curating and registering your own AnnData objects.

Show me a screenshot

Load the public LaminDB instance that mirrors cellxgene:

# !pip install 'lamindb[bionty,jupyter]'
!lamin load laminlabs/cellxgene
❗ Full backed capabilities are not available for this version of anndata, please install anndata>=0.9.1.
💡 connected lamindb: laminlabs/cellxgene
import lamindb as ln
import bionty as bt
Hide code cell output
💡 connected lamindb: laminlabs/cellxgene
❗ Full backed capabilities are not available for this version of anndata, please install anndata>=0.9.1.

Query & understand metadata

Auto-complete metadata

You can create look-up objects for any registry in LaminDB, including basic biological entities and things like users or storage locations.

Let’s use auto-complete to look up cell types:

Show me a screenshot
cell_types = bt.CellType.lookup()
cell_types.effector_t_cell
CellType(uid='3nfZTVV4', name='effector T cell', ontology_id='CL:0000911', synonyms='effector T-cell|effector T-lymphocyte|effector T lymphocyte', description='A Differentiated T Cell With Ability To Traffic To Peripheral Tissues And Is Capable Of Mounting A Specific Immune Response.', created_by_id=1, source_id=48, updated_at='2023-11-28 22:30:57 UTC')

You can also arbitrarily chain filters and create lookups from them:

users = ln.User.lookup()
organisms = bt.Organism.lookup()
experimental_factors = bt.ExperimentalFactor.lookup()  # labels for experimental factors
tissues = bt.Tissue.lookup()  # tissue labels
suspension_types = ln.ULabel.filter(name="is_suspension_type").one().children.lookup()  # suspension types

Search & filter metadata

We can use search & filters for metadata:

bt.CellType.search("effector T cell").df().head()
Hide code cell output
uid name ontology_id abbr synonyms description source_id run_id created_by_id updated_at
id
1623 3nfZTVV4 effector T cell CL:0000911 None effector T-cell|effector T-lymphocyte|effector... A Differentiated T Cell With Ability To Traffi... 48 NaN 1 2023-11-28 22:30:57.481778+00:00
1503 1oa5G2Mq memory T cell CL:0000813 None memory T-cell|memory T lymphocyte|memory T-lym... A Long-Lived, Antigen-Experienced T Cell That ... 48 NaN 1 2023-11-28 22:27:55.580290+00:00
1169 6JD5JCZC CD8-positive, alpha-beta cytokine secreting ef... CL:0000908 None CD8-positive, alpha-beta cytokine secreting ef... A Cd8-Positive, Alpha-Beta T Cell With The Phe... 48 NaN 1 2023-11-28 22:27:55.571576+00:00
1229 69TEBGqb exhausted T cell CL:0011025 None Tex cell|An effector T cell that displays impa... None 48 NaN 1 2023-11-28 22:27:55.572884+00:00
1331 43cBCa7s helper T cell CL:0000912 None helper T-lymphocyte|T-helper cell|helper T lym... A Effector T Cell That Provides Help In The Fo... 48 NaN 1 2023-11-28 22:27:55.575955+00:00

And use a uid to filter exactly one metadata record:

effector_t_cell = bt.CellType.filter(uid="3nfZTVV4").one()
effector_t_cell
CellType(uid='3nfZTVV4', name='effector T cell', ontology_id='CL:0000911', synonyms='effector T-cell|effector T-lymphocyte|effector T lymphocyte', description='A Differentiated T Cell With Ability To Traffic To Peripheral Tissues And Is Capable Of Mounting A Specific Immune Response.', created_by_id=1, source_id=48, updated_at='2023-11-28 22:30:57 UTC')

Understand ontologies

View the related ontology terms:

effector_t_cell.view_parents(distance=2, with_children=True)
_images/6cdfc2f61da5a14e92b8512c8b1af5865ee670a550a55ae2659acf11ebca5fbc.svg

Or access them programmatically:

effector_t_cell.children.df()
uid name ontology_id abbr synonyms description source_id run_id created_by_id updated_at
id
931 2VQirdSp effector CD8-positive, alpha-beta T cell CL:0001050 None effector CD8-positive, alpha-beta T lymphocyte... A Cd8-Positive, Alpha-Beta T Cell With The Phe... 48 None 1 2023-11-28 22:27:55.565981+00:00
1088 490Xhb24 effector CD4-positive, alpha-beta T cell CL:0001044 None effector CD4-positive, alpha-beta T lymphocyte... A Cd4-Positive, Alpha-Beta T Cell With The Phe... 48 None 1 2023-11-28 22:27:55.569832+00:00
1229 69TEBGqb exhausted T cell CL:0011025 None Tex cell|An effector T cell that displays impa... None 48 None 1 2023-11-28 22:27:55.572884+00:00
1309 5s4gCMdn cytotoxic T cell CL:0000910 None cytotoxic T lymphocyte|cytotoxic T-lymphocyte|... A Mature T Cell That Differentiated And Acquir... 48 None 1 2023-11-28 22:27:55.575444+00:00
1331 43cBCa7s helper T cell CL:0000912 None helper T-lymphocyte|T-helper cell|helper T lym... A Effector T Cell That Provides Help In The Fo... 48 None 1 2023-11-28 22:27:55.575955+00:00

Query artifacts

Unlike in the SOMA guide, here, we’ll query sets of .h5ad files, which correspond to AnnData objects.

ln.Artifact.filter(
    suffix=".h5ad",
    description__contains="immune",
    size__gt=1000000000,
    cell_types__name__in=["B cell", "T cell"],
    created_by__handle="sunnyosun"
).order_by(
    "created_at"
).df(
    include=["cell_types__name", "created_by__handle"]
).head()
cell_types__name created_by__handle uid version description key suffix type accessor size ... hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
879 [conventional dendritic cell, classical monocy... sunnyosun BCutg5cxmqLmy2Z5SS8J 2023-07-25 Type I interferon autoantibodies are associate... cell-census/2023-07-25/h5ads/01ad3cd7-3929-465... .h5ad None AnnData 6353682597 ... md5-n None 600929 1 False 2 11 16 1 2024-01-24 07:14:10.959155+00:00
1106 [immature B cell, monocyte, naive thymus-deriv... sunnyosun 3xdOASXuAxxJtSchJO3D 2023-07-25 HSC/immune cells (all hematopoietic-derived ce... cell-census/2023-07-25/h5ads/48101fa2-1a63-451... .h5ad None AnnData 6214230662 ... md5-n None 589390 1 False 2 11 16 1 2024-01-24 07:11:10.324135+00:00
1174 [monocyte, conventional dendritic cell, plasma... sunnyosun wt7eD72sTzwL3rfYaZr2 2023-07-25 A scRNA-seq atlas of immune cells at the CNS b... cell-census/2023-07-25/h5ads/58b01044-c5e5-4b0... .h5ad None AnnData 1052158249 ... md5-n None 130908 1 False 2 11 16 1 2024-01-24 07:09:45.364255+00:00
1377 [monocyte, ciliated cell, macrophage, natural ... sunnyosun znTBqWgfYgFlLjdQ6Ba7 2023-07-25 Large-scale single-cell analysis reveals criti... cell-census/2023-07-25/h5ads/9dbab10c-118d-496... .h5ad None AnnData 13929140098 ... md5-n None 1462702 1 False 2 11 16 1 2024-01-24 07:14:24.084706+00:00
1482 [effector CD4-positive, alpha-beta T cell, con... sunnyosun dEP0dZ8UxLgwnkLjz6Iq 2023-07-25 Single-cell sequencing links multiregional imm... cell-census/2023-07-25/h5ads/bd65a70f-b274-413... .h5ad None AnnData 1204103287 ... md5-n None 167283 1 False 2 11 16 1 2024-01-24 07:05:49.602044+00:00

5 rows × 21 columns

Queries by string are easily full of typos. Let’s query with auto-completed records instead:

ln.Artifact.filter(
    suffix=".h5ad",
    description__contains="immune",
    size__gt=1000000000,
    cell_types__in=[cell_types.b_cell, cell_types.t_cell],
    created_by=users.sunnyosun
).order_by(
    "created_at"
).df(
    include=["cell_types__name", "created_by__handle"]
).head()
cell_types__name created_by__handle uid version description key suffix type accessor size ... hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
879 [conventional dendritic cell, classical monocy... sunnyosun BCutg5cxmqLmy2Z5SS8J 2023-07-25 Type I interferon autoantibodies are associate... cell-census/2023-07-25/h5ads/01ad3cd7-3929-465... .h5ad None AnnData 6353682597 ... md5-n None 600929 1 False 2 11 16 1 2024-01-24 07:14:10.959155+00:00
1106 [immature B cell, monocyte, naive thymus-deriv... sunnyosun 3xdOASXuAxxJtSchJO3D 2023-07-25 HSC/immune cells (all hematopoietic-derived ce... cell-census/2023-07-25/h5ads/48101fa2-1a63-451... .h5ad None AnnData 6214230662 ... md5-n None 589390 1 False 2 11 16 1 2024-01-24 07:11:10.324135+00:00
1174 [monocyte, conventional dendritic cell, plasma... sunnyosun wt7eD72sTzwL3rfYaZr2 2023-07-25 A scRNA-seq atlas of immune cells at the CNS b... cell-census/2023-07-25/h5ads/58b01044-c5e5-4b0... .h5ad None AnnData 1052158249 ... md5-n None 130908 1 False 2 11 16 1 2024-01-24 07:09:45.364255+00:00
1377 [monocyte, ciliated cell, macrophage, natural ... sunnyosun znTBqWgfYgFlLjdQ6Ba7 2023-07-25 Large-scale single-cell analysis reveals criti... cell-census/2023-07-25/h5ads/9dbab10c-118d-496... .h5ad None AnnData 13929140098 ... md5-n None 1462702 1 False 2 11 16 1 2024-01-24 07:14:24.084706+00:00
1482 [effector CD4-positive, alpha-beta T cell, con... sunnyosun dEP0dZ8UxLgwnkLjz6Iq 2023-07-25 Single-cell sequencing links multiregional imm... cell-census/2023-07-25/h5ads/bd65a70f-b274-413... .h5ad None AnnData 1204103287 ... md5-n None 167283 1 False 2 11 16 1 2024-01-24 07:05:49.602044+00:00

5 rows × 21 columns

Query artifacts via collections

To access them, we query the Collection record that links the latest LTS set of .h5ad artifacts:

collection = ln.Collection.filter(name="cellxgene-census", version="2024-07-01").one()
collection
Collection(uid='dMyEX3NTfKOEYXyMKDD7', version='2024-07-01', name='cellxgene-census', hash='nI8Ag-HANeOpZOz-8CSn', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:24:38 UTC')

You can get all linked artifacts as a dataframe - there are >1000 h5ad files in cellxgene-census version 2023-12-15.

collection.artifacts.count()
812
collection.artifacts.df().head()  # not tracking run & transform because read-only instance
Hide code cell output
uid version description key suffix type accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
3305 1BNWhcCqu1CMSJaHxpbn 2024-07-01 All - A single-cell transcriptomic atlas chara... cell-census/2024-07-01/h5ads/98e5ea9f-16d6-47e... .h5ad dataset AnnData 2578203515 k-aZJBIjuvnO5Vek3JK-Mg-308 md5-n None 110824 1 False 2 22 27 1 2024-07-12 12:40:41.719518+00:00
3301 aJTH55LW2CTIWu306YiY 2024-07-01 Supercluster: Deep-layer intratelencephalic cell-census/2024-07-01/h5ads/98113e7e-f586-406... .h5ad dataset AnnData 3521994530 B8cjeVHgg9Q9Rr-JGaUjfg-420 md5-n None 228467 1 False 2 22 27 1 2024-07-12 12:40:41.728651+00:00
3313 pnQX4jvkj3eFWGOzDxbW 2024-07-01 Evolution of cellular diversity in primary mot... cell-census/2024-07-01/h5ads/9b686bb6-1427-4e1... .h5ad dataset AnnData 107509355 Z-uGNA6tRhMB1q46A3R8yg-13 md5-n None 10739 1 False 2 22 27 1 2024-07-12 12:40:41.762869+00:00
3566 2bF2gDSwbNbDsFVg2KQf 2024-07-01 Supercluster: CGE-derived interneurons cell-census/2024-07-01/h5ads/e4ddac12-f48f-445... .h5ad dataset AnnData 2586217727 8IDdkinp07n9AgQaWH9yUw-309 md5-n None 129495 1 False 2 22 27 1 2024-07-12 12:40:42.069642+00:00
2879 Pvhx7GAmAt4SYg03sE0M 2024-07-01 Single nucleus transcriptomic profiling of hum... cell-census/2024-07-01/h5ads/06ef6b36-6c9b-4e1... .h5ad dataset AnnData 92790726 V9KkecqXGqQJRF1lluo6Kg-12 md5-n None 10533 1 False 2 22 27 1 2024-07-12 12:34:51.739962+00:00

You can query across artifacts by arbitrary metadata combinations, for instance:

query = collection.artifacts.filter(
    organisms=organisms.human,
    cell_types__in=[cell_types.dendritic_cell, cell_types.neutrophil],
    tissues=tissues.kidney,
    ulabels=suspension_types.cell,
    experimental_factors=experimental_factors.ln_10x_3_v2,
)
query = query.order_by("size")  # order by size
query.df().head()  # convert to DataFrame
Hide code cell output
uid version description key suffix type accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
2961 WwmBIhBNLTlRcSoBDt76 2024-07-01 Mature kidney dataset: immune cell-census/2024-07-01/h5ads/20d87640-4be8-487... .h5ad dataset AnnData 45158726 GCMHkdQSTeXxRVF7gMZFIA-6 md5-n None 7803 1 False 2 22 27 1 2024-07-12 12:40:43.756335+00:00
2961 WwmBIhBNLTlRcSoBDt76 2024-07-01 Mature kidney dataset: immune cell-census/2024-07-01/h5ads/20d87640-4be8-487... .h5ad dataset AnnData 45158726 GCMHkdQSTeXxRVF7gMZFIA-6 md5-n None 7803 1 False 2 22 27 1 2024-07-12 12:40:43.756335+00:00
3000 gHlQ5Muwu3G9pvFCx3x8 2024-07-01 Fetal kidney dataset: immune cell-census/2024-07-01/h5ads/2d31c0ca-0233-41c... .h5ad dataset AnnData 64546349 2qy8uy-65Sd_XcBU-nrPgA-8 md5-n None 6847 1 False 2 22 27 1 2024-07-12 12:40:45.273783+00:00
3324 P4Oai3OLGAzRwoicHfLM 2024-07-01 Mature kidney dataset: full cell-census/2024-07-01/h5ads/9ea768a2-87ab-46b... .h5ad dataset AnnData 194047623 aZVpGZwAfMCziff_5ow2bg-24 md5-n None 40268 1 False 2 22 27 1 2024-07-12 12:40:44.478948+00:00
3324 P4Oai3OLGAzRwoicHfLM 2024-07-01 Mature kidney dataset: full cell-census/2024-07-01/h5ads/9ea768a2-87ab-46b... .h5ad dataset AnnData 194047623 aZVpGZwAfMCziff_5ow2bg-24 md5-n None 40268 1 False 2 22 27 1 2024-07-12 12:40:44.478948+00:00

Query arrays

Each artifact stores an array in form of an curated data matrix, an AnnData object.

Let’s look at the first array in the artifact query and show metadata using .describe():

artifact = query.first()
artifact.describe()
Hide code cell output
Artifact(uid='WwmBIhBNLTlRcSoBDt76', version='2024-07-01', description='Mature kidney dataset: immune', key='cell-census/2024-07-01/h5ads/20d87640-4be8-487f-93d4-dce38378d00f.h5ad', suffix='.h5ad', type='dataset', accessor='AnnData', size=45158726, hash='GCMHkdQSTeXxRVF7gMZFIA-6', hash_type='md5-n', n_observations=7803, visibility=1, key_is_virtual=False, updated_at='2024-07-12 12:40:43 UTC')
  Provenance
    .created_by = 'sunnyosun'
    .storage = 's3://cellxgene-data-public'
    .transform = 'Census release 2024-07-01 (LTS)'
    .run = '2024-07-16 12:49:41 UTC'
  Labels
    .organisms = 'human'
    .tissues = 'cortex of kidney', 'renal medulla', 'kidney', 'kidney blood vessel', 'renal pelvis'
    .cell_types = 'classical monocyte', 'plasmacytoid dendritic cell', 'natural killer cell', 'dendritic cell', 'CD4-positive, alpha-beta T cell', 'mast cell', 'neutrophil', 'non-classical monocyte', 'CD8-positive, alpha-beta T cell', 'B cell', ...
    .diseases = 'normal'
    .phenotypes = 'male', 'female'
    .experimental_factors = '10x 3' v2'
    .developmental_stages = '2-year-old human stage', '4-year-old human stage', '12-year-old human stage', '44-year-old human stage', '49-year-old human stage', '53-year-old human stage', '63-year-old human stage', '64-year-old human stage', '67-year-old human stage', '70-year-old human stage', ...
    .ethnicities = 'unknown'
    .ulabels = 'TxK2', 'Wilms1', 'TxK4', 'TTx', 'RCC3', 'RCC1', 'VHL', 'TxK3', 'TxK1', 'Wilms3', ...
  Features
    'donor_id' = 'Wilms3', 'TTx', 'pRCC', 'VHL', 'RCC3', 'TxK1', 'TxK4', 'TxK3', 'RCC2', 'Wilms2', ...
    'organism' = 'human'
    'suspension_type' = 'cell'
  Feature sets
    'obs' = 'assay', 'cell_type', 'development_stage', 'disease', 'donor_id', 'self_reported_ethnicity', 'sex', 'tissue', 'organism', 'tissue_type', 'suspension_type'
    'var' = 'None', 'EBF1', 'LINC02202', 'RNF145', 'LINC01932', 'UBLCP1', 'IL12B', 'LINC01845', 'LINC01847', 'ADRA1B', 'TTC1', 'PWWP2A', 'FABP6', 'FABP6-AS1', 'CCNJL', 'C1QTNF2'
More ways of accessing metadata

Access just features:

artifact.features

Or get labels given a feature:

artifact.labels.get(features.tissue).df()
artifact.labels.get(features.collection).one()

If you want to query a slice of the array data, you have two options:

  1. Cache & load the entire array into memory via artifact.load() -> AnnData (caches the h5ad on disk, so that you only download once)

  2. Stream the array from the cloud using a cloud-backed accessor artifact.open() -> AnnDataAccessor

Both options will run much faster if you run them close to the data (AWS S3 on the US West Coast, consider logging into hosted compute there).

Cache & load:

adata = artifact.load()
adata
Hide code cell output
AnnData object with n_obs × n_vars = 7803 × 32839
    obs: 'donor_id', 'donor_age', 'self_reported_ethnicity_ontology_term_id', 'organism_ontology_term_id', 'sample_uuid', 'tissue_ontology_term_id', 'development_stage_ontology_term_id', 'suspension_uuid', 'suspension_type', 'library_uuid', 'assay_ontology_term_id', 'mapped_reference_annotation', 'is_primary_data', 'cell_type_ontology_term_id', 'author_cell_type', 'disease_ontology_term_id', 'reported_diseases', 'sex_ontology_term_id', 'compartment', 'Experiment', 'Project', 'tissue_type', 'cell_type', 'assay', 'disease', 'organism', 'sex', 'tissue', 'self_reported_ethnicity', 'development_stage', 'observation_joinid'
    var: 'feature_is_filtered', 'feature_name', 'feature_reference', 'feature_biotype', 'feature_length'
    uns: 'citation', 'default_embedding', 'schema_reference', 'schema_version', 'title'
    obsm: 'X_umap'

Now we have an AnnData object, which stores observation annotations matching our artifact-level query in the .obs slot, and we can re-use almost the same query on the array-level.

See the array-level query
adata_slice = adata[
    adata.obs.cell_type.isin(
        [cell_types.dendritic_cell.name, cell_types.neutrophil.name]
    )
    & (adata.obs.tissue == tissues.kidney.name)
    & (adata.obs.suspension_type == suspension_types.cell.name)
    & (adata.obs.assay == experimental_factors.ln_10x_3_v2.name)
]
adata_slice
See the artifact-level query for comparison
query = collection.artifacts.filter(
    organism=organisms.human,
    cell_types__in=[cell_types.dendritic_cell, cell_types.neutrophil],
    tissues=tissues.kidney,
    ulabels=suspension_types.cell,
    experimental_factors=experimental_factors.ln_10x_3_v2,
)

AnnData uses pandas to manage metadata and the syntax differs slightly. However, the same metadata records are used.

Stream:

adata_backed = artifact.open()
adata_backed
Hide code cell output
AnnDataAccessor object with n_obs × n_vars = 7803 × 32839
  constructed for the AnnData object 20d87640-4be8-487f-93d4-dce38378d00f.h5ad
    obs: ['Experiment', 'Project', '_index', 'assay', 'assay_ontology_term_id', 'author_cell_type', 'cell_type', 'cell_type_ontology_term_id', 'compartment', 'development_stage', 'development_stage_ontology_term_id', 'disease', 'disease_ontology_term_id', 'donor_age', 'donor_id', 'is_primary_data', 'library_uuid', 'mapped_reference_annotation', 'observation_joinid', 'organism', 'organism_ontology_term_id', 'reported_diseases', 'sample_uuid', 'self_reported_ethnicity', 'self_reported_ethnicity_ontology_term_id', 'sex', 'sex_ontology_term_id', 'suspension_type', 'suspension_uuid', 'tissue', 'tissue_ontology_term_id', 'tissue_type']
    obsm: ['X_umap']
    raw: ['X', 'var', 'varm']
    uns: ['citation', 'default_embedding', 'schema_reference', 'schema_version', 'title']
    var: ['_index', 'feature_biotype', 'feature_is_filtered', 'feature_length', 'feature_name', 'feature_reference']

We now have an AnnDataAccessor object, which behaves much like an AnnData, and the query looks the same.

See the query
adata_backed_slice = adata_backed[
    adata_backed.obs.cell_type.isin(
        [cell_types.dendritic_cell.name, cell_types.neutrophil.name]
    )
    & (adata_backed.obs.tissue == tissues.kidney.name)
    & (adata_backed.obs.suspension_type == suspension_types.cell.name)
    & (adata_backed.obs.assay == experimental_factors.ln_10x_3_v2.name)
]

adata_backed_slice.to_memory()

Train ML models

You can directly train ML models on very large collections of AnnData objects.

See Train a machine learning model on a collection.

Exploring data by collection

Alternatively,

Let’s search the collections from CELLxGENE within the 2023-12-15 release:

ln.Collection.filter(version="2024-07-01").search("immune human kidney", limit=10)
<QuerySet [Collection(uid='PWDH0VJMkhsYyHwgIhN9', version='2024-07-01', name='A cell atlas of human thymic development defines T cell repertoire formation', description='10.1126/science.aay3224', hash='kdNuiUsjslVtg4wPapRn', reference='de13e3e2-23b6-40ed-a413-e9e12d7d3910', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:24:38 UTC'), Collection(uid='YVo6IaHRKZfDxJLMfiP8', version='2024-07-01', name='Spatial and cell type transcriptional landscape of human cerebellar development', description='10.1038/s41593-021-00872-y', hash='n-9_rjprIyWeU9SFPEtL', reference='1b014f39-f202-45ae-bb7d-9286bddd8d8b', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:24:38 UTC'), Collection(uid='cwFRDKcBVLQ1DgA4O6nC', version='2024-07-01', name='Single cell transcriptomic profiling identifies molecular phenotypes of newborn human lung cells', description='10.3390/genes15030298', hash='P4dNll_9XIdx7s4kAugC', reference='28e9d721-6816-48a2-8d0b-43bf0b0c0ebc', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:17:42 UTC'), Collection(uid='vUL4bLnfnvI2hRpBSfK5', version='2024-07-01', name='Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease', description='10.1038/s41467-019-12464-3', hash='m4ds_3ZpriUHatzF7H97', reference='24d42e5e-ce6d-45ff-a66b-a3b3b715deaf', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:24:38 UTC'), Collection(uid='lPs6VN8t49wQK3pl71dM', version='2024-07-01', name='A single-cell and spatially resolved atlas of human breast cancers', description='10.1038/s41588-021-00911-1', hash='KfY95LtPo2L8RqP612ug', reference='dea97145-f712-431c-a223-6b5f565f362a', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:18:56 UTC'), Collection(uid='uarP82A6F0cOH8dKjpQL', version='2024-07-01', name='Comparative transcriptomics reveals human-specific cortical features', description='10.1126/science.ade9516', hash='6aAYLBJvC-dOgnZxg7sd', reference='4dca242c-d302-4dba-a68f-4c61e7bad553', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:24:38 UTC'), Collection(uid='WpJDkF942c2mHNbJ3En3', version='2024-07-01', name='Cross-tissue immune cell analysis reveals tissue-specific features in humans', description='10.1126/science.abl5197', hash='dPITKafh7mmYOfQqQyWq', reference='62ef75e4-cbea-454e-a0ce-998ec40223d3', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:24:39 UTC'), Collection(uid='rbcRjHfXE0LKIvZcjZro', version='2024-07-01', name='Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations', description='10.1038/s41467-018-06318-7', hash='9f-ccLWu6VqrkN4ITb-Z', reference='bd5230f4-cd76-4d35-9ee5-89b3e7475659', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:24:38 UTC'), Collection(uid='2gBKIwx8AtCHc4nfcQqc', version='2024-07-01', name='A single-cell transcriptome atlas of the adult human retina', description='10.15252/embj.2018100811', hash='sCh4gUTJJJjECsp1dj0q', reference='3472f32d-4a33-48e2-aad5-666d4631bf4c', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:24:39 UTC'), Collection(uid='zZLyhpo1aDdxdbULFbVT', version='2024-07-01', name='Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration', description='10.1038/s41467-019-12780-8', hash='1B0m9_FahAvefSTM8_AV', reference='1a486c4c-c115-4721-8c9f-f9f096e10857', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=22, run_id=27, updated_at='2024-07-16 12:24:38 UTC')]>

Let’s get the record of the top hit collection:

collection = ln.Collection.get("kqiPjpzpK9H9rdtnV67f")
collection
Collection(uid='kqiPjpzpK9H9rdtnV67f', version='2023-12-15', name='Spatiotemporal immune zonation of the human kidney', description='10.1126/science.aat5031', hash='4wGcXeeqsjVdbRdU7ZuJ', reference='120e86b4-1195-48c5-845b-b98054105eec', reference_type='CELLxGENE Collection ID', visibility=1, created_by_id=1, transform_id=17, run_id=22, updated_at='2024-01-29 07:54:33 UTC')

We see it’s a Science paper and we could find more information using the DOI or CELLxGENE collection id.

Check different versions of this collection:

collection.versions.df()
uid version name description hash reference reference_type visibility transform_id artifact_id run_id created_by_id updated_at
id
17 kqiPjpzpK9H9rdtnHWas 2023-07-25 Spatiotemporal immune zonation of the human ki... 10.1126/science.aat5031 w_VZE7n841ktaA9FjdLh 120e86b4-1195-48c5-845b-b98054105eec CELLxGENE Collection ID 1 NaN None NaN 1 2024-01-08 12:01:20.121095+00:00
365 kqiPjpzpK9H9rdtnV67f 2023-12-15 Spatiotemporal immune zonation of the human ki... 10.1126/science.aat5031 4wGcXeeqsjVdbRdU7ZuJ 120e86b4-1195-48c5-845b-b98054105eec CELLxGENE Collection ID 1 17.0 None 22.0 1 2024-01-29 07:54:33.854515+00:00
595 kqiPjpzpK9H9rdtnCt1o 2024-07-01 Spatiotemporal immune zonation of the human ki... 10.1126/science.aat5031 I6mGKs5YVdoOJwMdRfj_ 120e86b4-1195-48c5-845b-b98054105eec CELLxGENE Collection ID 1 22.0 None 27.0 1 2024-07-16 12:24:39.167691+00:00

Each collection has at least one Artifact file associated to it. Let’s get the associated artifacts:

collection.artifacts.df()
uid version description key suffix type accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
1778 b2x19Eg28GGSNnXW1hAD 2023-12-15 Fetal kidney dataset: nephron cell-census/2023-12-15/h5ads/08073b32-d389-41f... .h5ad None AnnData 159545411 _JE59jFHDrOn0hj4i1yXSQ-20 md5-n None 10790 1 False 2 16 22 1 2024-01-29 07:46:06.497662+00:00
1880 WwmBIhBNLTlRcSoBpatT 2023-12-15 Mature kidney dataset: immune cell-census/2023-12-15/h5ads/20d87640-4be8-487... .h5ad None AnnData 44647761 hSLF-GPhLXaC2tVIOJEdXA-6 md5-n None 7803 1 False 2 16 22 1 2024-01-29 07:46:33.152678+00:00
1930 gHlQ5Muwu3G9pvFC7egT 2023-12-15 Fetal kidney dataset: immune cell-census/2023-12-15/h5ads/2d31c0ca-0233-41c... .h5ad None AnnData 64056560 jENeQIq0JdoHl5PyfY-sjA-8 md5-n None 6847 1 False 2 16 22 1 2024-01-29 07:46:37.205210+00:00
1944 USUgRVwrCMquHiImhk5D 2023-12-15 Mature kidney dataset: non PT parenchyma cell-census/2023-12-15/h5ads/2fc9c59f-3cfd-48d... .h5ad None AnnData 39294782 3l5iNnBmPFbYfR3-THYWNQ-5 md5-n None 4620 1 False 2 16 22 1 2024-01-29 07:46:52.173865+00:00
2405 P4Oai3OLGAzRwoicaxCB 2023-12-15 Mature kidney dataset: full cell-census/2023-12-15/h5ads/9ea768a2-87ab-46b... .h5ad None AnnData 192484358 yghldeu2bOC5jtvnqZH8Og-23 md5-n None 40268 1 False 2 16 22 1 2024-01-29 07:49:11.905786+00:00
2570 6mnZ3SeQFhffr3wTdZZb 2023-12-15 Fetal kidney dataset: stroma cell-census/2023-12-15/h5ads/c52de62a-058d-4d7... .h5ad None AnnData 109942751 s24Q5-FNUNQPLZw9BuwOVg-14 md5-n None 8345 1 False 2 16 22 1 2024-01-29 07:50:01.866851+00:00
2652 11HQaMeIUaOwyHoOWVvA 2023-12-15 Fetal kidney dataset: full cell-census/2023-12-15/h5ads/d7dcfd8f-2ee7-438... .h5ad None AnnData 341214674 2mnG5TiEpj0Wr5L19TTFRw-41 md5-n None 27197 1 False 2 16 22 1 2024-01-29 07:50:28.610568+00:00